MR-based attenuation correction in brain PET based on UTE sequences

نویسندگان

  • Jorge Cabello
  • Stephan G Nekolla
  • Sibylle I Ziegler
چکیده

Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Germany Attenuation correction (AC) in brain PET/MR has recently emerged as one of the challenging tasks in the PET/MR field. It has been shown that to ignore the attenuation produced by bone can lead to errors ranging from 5-30% in regions close to bone structures. Since the information provided by the MR signal is not directly related to tissue attenuation, alternative methods have to be developed. Signal from bone tissue is difficult to measure given its short transverse relaxation time (T2). Ultrashort-echo time (UTE) pulse sequences were developed to measure signal from tissues with short T2. A combination of two consecutive UTE echoes has been used in several works to measure signal from bone tissue. The first echo is able to measure signal from bone tissue in addition to soft tissue, while the second echo contains most of the soft tissue contained in the first echo but not bone. In this work we extract the attenuation information from the difference between the logarithm of two images obtained after applying two consecutive UTE pulse sequences using the mMR scanner (Siemens Healthcare). Subsequently, image processing techniques are applied to reduce the noise and extract air cavities within the head. The resulting image is converted to linear attenuation coefficients, generating what is known as μ-map, to be used during reconstruction. For comparison purposes PET/CT scans of the same patients were acquired prior to the PET/MR scan. Additional μ-maps obtained for comparison were extracted from a Dixon sequence (used in clinical routine) and an additional μ-map calculated by the scanner based on UTE pulse sequences. Preliminary quantitative results measured in the cerebellum, using the value obtained with CT-based AC as reference, show differences of 34% without AC, 13% using the Dixon-based and UTE-based provided by the scanner, and 0.8% with the AC strategy presented here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging

The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR...

متن کامل

PET/MR attenuation correction in brain imaging using a continuous bone signal derived from UTE

Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Copenhagen, Denmark In the absence of transmission sources in combined clinical PET/MR systems, MR images are used for MR-based attenuation correction (MRAC). The main challenge in MR-AC is to separate the bone and air, as neither have a signal in the MR images. In the attenuation maps supplied by the vendor...

متن کامل

Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging.

The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR...

متن کامل

MR-based PET Attenuation Correction for Neurological Studies Using Dual-Echo UTE Sequences

INTRODUCTION Due to the limited space available inside an MR scanner, most of the MR compatible PET inserts are not equipped with a transmission source, which makes the implementation and validation of an MR-based attenuation correction (AC) method necessary. The obvious challenge is that MR images are not typically directly related to tissue linear attenuation coefficients (LACs). Furthermore,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014